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We address the issue of inferring the connectivity structure of spatially extended dynam-
ical systems by estimation of mutual information between pairs of sites. The well-known
problems resulting from correlations within and between the time series are addressed
by explicit temporal and spatial modelling steps which aim at approximately removing
all spatial and temporal correlations, i.e. at whitening the data, such that it is replaced by
spatiotemporal innovations; this approach provides a link to the maximum-likelihood
method and, for appropriately chosen models, removes the problem of estimating proba-
bility distributions of unknown, possibly complicated shape. A parsimonious multivari-
ate autoregressive model based on nearest-neighbour interactions is employed. Mutual
information can be reinterpreted in the framework of dynamical model comparison
(i.e. likelihood ratio testing), since it is shown to be equivalent to the difference of the
log-likelihoods of coupled and uncoupled models for a pair of sites, and a parametric
estimator of mutual information can be derived. We also discuss, within the framework
of model comparison, the relationship between the coefficient of linear correlation and
mutual information. The practical application of this methodology is demonstrated for
simulated multivariate time series generated by a stochastic coupled-map lattice. The
parsimonious modelling approach is compared to general multivariate autoregressive
modelling and to Independent Component Analysis (ICA).
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1. INTRODUCTION

Recently there is growing consensus that for the investigation of complex ex-
tended systems new approaches to the analysis of dynamical multivariate data sets
are required.(1,2) Such data sets will typically arise in the guise of multivariate
time series, such that the temporal dimension of the data reflects the dynamical
nature of the underlying processes, while other aspects pertinent to these processes
are accommodated in further dimensions. If the data, as a typical and very impor-
tant case, in addition to the dimension of time also depends on physical space, it
is commonly called spatiotemporal data.

The temporal dimension is characterised by the non-equivalence between
the two possible directions of the time arrow, which gives rise to the principle
of causality, according to which events in the past may influence events in the
future, whereas the opposite situation never occurs. The spatial dimension is (in
most cases) characterised by the absence of such asymmetries, and by the concept
of locality, i.e. the existence of a neighbourhood for each point in space, such
that, for sufficiently short time intervals, direct interactions involving this point
will typically be confined to points within this neighbourhood, but not extend to
spatially remote points.

In contemporary scientific research a vast number of systems are investi-
gated which fall into the class of spatially extended dynamical systems. They
cover a wide range of disciplines, including hydrodynamics,(3) optics,(4) meteorol-
ogy, geophysics,(5) ecology,(6) biology, medicine(7,8) and engineering.(9) Presently,
it has become standard in these disciplines to routinely record spatiotemporal
data sets in large quantities, either through active experimentation or through
field observations. Despite the diversity of these disciplines and of the corre-
sponding data sets, it seems likely that for many cases a unified approach to
analysing and modelling the basic properties of the underlying dynamics can be
formulated.

As a central notion relevant for this field we mention connectivity, i.e. the
presence of direct (and possibly directed) dynamical interactions between spatially
distinct locations within the system. Information about connectivity in a system
may reach far beyond the level of pure data description since it addresses an
important aspect of the functional composition of the system. Correlations within
multivariate time series can be described by measures such as linear and nonlinear
correlation functions or mutual information;(10) especially mutual information
has attracted considerable attention recently since it promises a very general
quantification of statistical dependence. Its practical estimation from real data,
however, is known to be a difficult task because of the need to estimate probability
densities.(11) This is true in particular for the case of short time series; in many
situations it may be difficult or impossible to record long time series from a system,
e.g. due to technical limitations or limited stationarity of the system.



Whitening as a Tool for Estimating Mutual Information 1277

In this paper we discuss the estimation of mutual information from temporally
and spatially correlated time series, and aim at clarifying the relations between
predictive modelling, maximum-likelihood estimation, model comparison, linear
correlation and mutual information. The close relationship between mutual infor-
mation and likelihood ratio testing was recently also observed by Brillinger.(12,13)

As our starting point, we interpret modelling as a process of spatial and temporal
whitening of the raw data, i.e. transforming it into spatially and temporally uncor-
related innovations. We will argue that this step removes the need for estimating
unknown and possibly complicated probability distributions, since they are re-
placed by Gaussian distributions. While it is well known that fitting a time series
by a predictive model corresponds to temporal whitening, i.e. the identification of
the noise process driving the (multivariate) dynamics, we will show that spatial
whitening can be interpreted as fitting the covariance matrix of this noise process.

The main focus of this paper lies on the presentation of the methodology
and its theoretical background, and the discussion is kept at a very general level,
assuming just the presence of a spatially extended dynamical system, from which
spatiotemporal data has been recorded. Although our interest in this subject was
initially triggered by data sets recorded in brain research, a full discussion of this
particular field of application would be beyond the scope of this paper. Instead
we will illustrate the practical application of the methodology by showing results
of analysing simulated data sets generated by a system of coupled stochastic
oscillators; this system can be regarded as an example of a coupled map lattice.(14)

The structure of this paper is as follows. In Sec. 2 we will briefly review the
definitions of the coefficient of linear correlation and of mutual information. Both
quantify dependencies between pairs of data sets, i.e. they may be estimated from
bivariate time series; while it is also possible to estimate the mutual information
of a set of more than two data sets, we will not use this case in this paper.

In Sec. 3 we will introduce a different viewpoint on the definition and es-
timation of mutual information from bivariate time series; for this purpose we
will discuss the concept of whitening by predictive autoregressive (AR) modelling
and refer to an important theorem from the theory of Markov processes which
provides the justification of this approach. The derivation of a central result on the
relation between the coefficient of linear correlation and mutual information will
be given in Appendix A. We will also briefly review linear modelling of bivariate
time series by likelihood maximisation.

In Sec. 4 we will generalise the discussion by considering modelling of mul-
tivariate time series representing spatially extended systems; in such situation the
issue of modelling the instantaneous correlations between the various spatial lo-
cations has to be addressed, which will lead us to the concept of spatial whitening.
Also in this case linear correlation and mutual information will be regarded as
properties of bivariate time series within the multivariate data set, i.e. of pairs of
spatial locations. In this section we will also briefly discuss the wider field of AR
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modelling of multivariate time series and one of its well-established manifesta-
tions, the Principal Oscillation Pattern (POP) method;(41) in contrast to this method,
in this paper we prefer to employ parsimonious multivariate autoregressive (MAR)
models, i.e. models with sparse transition matrix.

In Sec. 5 we will discuss how from the innovations resulting from multivariate
time series modelling, deeper layers of correlation can be extracted; this will lead
us to a fully parametric estimator of mutual information, providing an alternative to
the common nonparametric estimators. The possibility to define this estimator is a
direct consequence of the fact that, for sufficiently good models, the distribution of
the innovations is known to be Gaussian. The detailed derivation of the estimator
will be deferred to Appendix B. The parametric estimator itself is valid for general
situations, not only for the case of spatiotemporal data.

In Sec. 6 the modelling approach, as proposed in this paper, will be briefly
compared with a widely applied class of algorithms for the analysis of multivariate
data, known as Independent Component Analysis (ICA).

In Sec. 7 a simulation study will be presented, and a concluding discussion
will be given in Sec. 8.

2. LINEAR CORRELATION AND MUTUAL INFORMATION

In this section we will review the definition of the two commonly used statis-
tics for measuring mutual dependencies between two time series, linear correlation
and mutual information, and we will briefly discuss in which way the latter differs
from the former.

2.1. Linear Correlation

For a given pair of time series xt and yt , t = 1, . . . , Nt , the linear correlation
structure can be quantified by the symmetric 2 × 2 sample covariance matrix

Sxy = 1

Nt

Nt∑

t=1

((xt − 〈xt 〉) , (yt − 〈yt 〉))† ((xt − 〈xt 〉) , (yt − 〈yt 〉)) , (1)

where 〈xt 〉 = 1
Nt

∑
t xt . We choose to define the elements of this matrix as

Sxy =
(

σ 2
x σxσyr (x, y)

σxσyr (x, y) σ 2
y

)
, (2)

where σ 2
x and σ 2

y denote the (sample) variances of xt and yt , respectively, while
the off-diagonal element quantifies the linear cross-covariance between the two
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variables; here the coefficient of linear correlation r (x, y) has been defined as(13)

r (x, y) =
∑

t (xt − 〈xt 〉) (yt − 〈yt 〉)
Ntσxσy

=
∑

t (xt − 〈xt 〉) (yt − 〈yt 〉)√∑
t (xt − 〈xt 〉)2 ∑

t (yt − 〈yt 〉)2
. (3)

Note that by this definition r (x, y) is normalised to −1 ≤ r (x, y) ≤ 1.

2.2. Mutual Information

In contrast to the coefficient of linear correlation, mutual information, as
introduced in 1948 by Shannon,(15) does not directly refer to the case of a pair
of time series. Rather it is based on the probability distributions of two random
variables x and y which can assume values out of a set of states; here we limit our
attention to the case of the number of possible states being finite, say S. Let the
index i , i = 1, . . . S, label these states, denote the corresponding values by xi and
yi and assume that joint and marginal probability distributions p(xi , y j ), p(xi )
and p(yi ) for the occurrence of these states exist. Then the mutual information
between x and y is defined by

I (x, y) =
S∑

i=1

S∑

j=1

p(xi , y j ) log
p(xi , y j )

p(xi )p(y j )
. (4)

Note that i and j do not label time, but states. Here we mention that it is
possible also to define linear correlation by a summation over states instead over
time,(10) but in this paper we will not need this variant. We rewrite Eq. (4) as

I (x, y) = 〈log p(xi , y j ) − log(p(xi )p(y j ))〉p(xi ,y j ), (5)

where 〈.〉p(xi ,y j ) denotes the average over (i, j) with respect to p(xi , y j ).
We remark that both mutual information and Shannon entropy are special

cases of a general measure of discrepancy between two probability distributions
pi and qi , introduced by Boltzmann already in 1877(16) and sometimes known as
Boltzmann entropy,(17) which is defined by

B(p; q) = −
∑

i

pi log
pi

qi
, (6)

where i may be an index vector. The negative of B(p; q) is known as Kullback–
Leibler information or relative entropy.(18)

When estimating I (x, y) from paired data (x (t), y(t)), t = 1, . . . Nt , where
t denotes simply an index for labelling the data, the probability distributions
p(xi , y j ), p(xi ) and p(y j ) have to be estimated numerically; while the most com-
mon method for this purpose is based on histograms,(13) recently various alterna-
tive approaches have been explored, in particular methods based on kernels,(19)
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correlation integrals(20) and k-nearest neighbour distances.(21) Obviously, the same
situation is given for the case of the estimation of Shannon entropy.(11)

Note that the concepts of “time” and “dynamics” are not involved in the
definition of I (x, y). The index t just serves the purpose of determining which
values in the data sets for x and y form pairs; this information is needed in the
estimation of p(xi , y j ). Apart from this constraint the sampled data (x (t), y(t))
are assumed to be independently drawn from the corresponding true probability
distributions, and I (x, y) will be invariant with respect to any shuffling of the
order of the data, as long as the pairs are preserved.

If the data comes in the guise of time series (such that t in fact denotes time),
the assumption of independence will typically be invalid, since most time series
show temporal correlations. It has been observed that such correlations pose a
problem for the estimation of mutual information; while recently a few authors
have begun to address this problem and to develop remedies,(22,23) still in most
applications the presence of temporal correlations is ignored. But by ignoring
these correlations the dynamics of the underlying process is ignored. In this paper
we suggest to regard these correlations as a source of valuable information, rather
than a nuisance.

3. INNOVATION APPROACH TO MUTUAL INFORMATION

In this section we will review the main theoretical foundations of this paper,
namely the concept of whitening and its implications for the likelihood of the data;
furthermore we will briefly discuss univariate and bivariate linear autoregressive
models.

3.1. The Likelihood of Innovation Time Series

If we decide to take the temporal correlations in time series serious, we have
to regard xt and yt as different random variables for each value of t ; then Eq. (5)
should be replaced by

I (x, y) = log p
(
(x1, y1), . . . , (xNt , yNt )

) − log
(

p(x1, . . . , xNt )p(y1, . . . , yNt )
)
,

(7)
where in the joint distribution of all elements of both time series we have ordered
the elements as pairs. If several time series aligned by an external trigger are
available, also the average with respect to the joint distribution (see Eq. (5)) could
be maintained, but this step is not essential and can be omitted. Reinterpreting
Eq. (7) from the viewpoint of time series analysis, it can be seen that mutual
information can be regarded as a difference between two terms representing log-
likelihoods, the first referring to the bivariate time series (xt , yt ), the second being
the sum of the log-likelihoods of the two univariate time series xt and yt . Let
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log-likelihood be denoted by L, then Eq. (7) corresponds to

I (x, y) = L(x, y) − (L(x) + L(y)) . (8)

For later use we note that Eq. (7) can alternatively be written by using
conditional probabilities as

I (x, y) = log(p(x1, . . . , xNt |y1, . . . , yNt ) p(y1, . . . , yNt ))

− log(p(x1, . . . , xNt ) p(y1, . . . , yNt )), (9)

corresponding to

I (x, y) = L(x |y) − L(x). (10)

In order to estimate mutual information from Eq. (7) high-dimensional joint
distributions need to be evaluated which, due to correlations between the elements
of the two time series, generally will have very complicated structure; these cor-
relations will occur both between x and y and within the values of each of these
two variables at different points of time t . In order to simplify the structure of
these distributions we propose to describe these correlations by the corresponding
optimal predictors of xt and yt , based on the set of previous values of the two
time series, {(xtx , yty )| tx , ty < t}, i.e. we perform three different modelling steps,
thereby estimating the conditional means for xt , yt and (xt , yt ); conditional mean
will be denoted by E(.). By limiting the information available for prediction to the
past we ensure that we stay in the domain of causal modelling. The residuals of
these predictions are given by

εt (x |x) = xt − E(xt |xt−1, xt−2, . . .), (11)

εt (y|y) = yt − E(yt |yt−1, yt−2, . . .), (12)

(εt (x |x, y), εt (y|x, y))† = (xt , yt )
†

−E((xt , yt )
†|(xt−1, yt−1)†, (xt−2, yt−2)†, . . .). (13)

Note that in general the residuals for x and y in Eq. (13) will be different from
those in Eqs. (11) and (12), since in Eq. (13) additional information is employed for
the predictions; this fact is expressed by the notation εt (x |x), εt (x |x, y), explicitly
stating the conditioning on one or both of the variables x and y.

Following a suggestion of Wiener, residuals are also called innovations. The
theoretical framework for the transformation of time series data into independent
innovations is provided by the theory of stochastic differential equations(24,25) and
by filtering theory,(26,27) alternatively also known as Markov process theory. The
most general results were given by Lévy(28) (see Theorem 41 in Ref. 29). He
has shown that, under mild conditions, any continuous-time Markov process can
be modelled such that the corresponding innovations can be represented as the
sum of two white noise processes, which have Gaussian and Poisson distributions,
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respectively; in the case of continuous dynamics only the Gaussian noise process
will be present. The case of additional observation noise has been treated by Frost
and Kailath.(30) Consequently, we expect that, under the assumption of continuous
dynamics, for optimal predictors the time series of resulting innovations will be
uncorrelated (in fact, independent) and Gaussian, even if, due to nonlinearities in
the dynamics, the xt and yt are non-Gaussian.

Eqs. (11), (12) and (13) represent mappings from the original data to the
corresponding innovations; let the Jacobians of these mappings be denoted by
∂ε(x)
∂x , ∂ε( y)

∂ y and ∂ε(x, y)
∂(x, y) , respectively, then the likelihoods of the original data and

of the innovations are related according to(31)

p(x1, . . . , xNt ) =
∣∣∣∣
∂ε(x)

∂x

∣∣∣∣ p(ε1(x |x), . . . , εNt (x |x)), (14)

p(y1, . . . , yNt ) =
∣∣∣∣
∂ε( y)

∂ y

∣∣∣∣ p(ε1(y|y), . . . , εNt (y|y)), (15)

p((x1, y1), . . . , (xNt , yNt )) =
∣∣∣∣
∂ε(x, y)

∂(x, y)

∣∣∣∣ p((ε1(x |x, y), ε1(y|x, y)), . . . ,

(εNt (x |x, y), εNt (y|x, y))), (16)

where the notation |.| denotes the absolute value of the determinant of a matrix.
Now it can be seen from Eq. (11) that ∂εt

∂xt
= 1 and ∂εt

∂xt ′
= 0 for t ′ > t (accord-

ing to the principle of causality), therefore the determinant in Eq. (14) is unity,
and in fact p(x1, . . . , xNt ) is equal to p(ε1(x |x), . . . , εNt (x |x)) for the specific
series of innovations ε1(x |x), . . . , εNt (x |x) corresponding to the data x1, . . . , xNt ,
although the shapes of these two distributions itself may differ very much. The
same argument applies to Eqs. (15) and (16).

Fortunately, this result removes the need to estimate the unknown and possibly
complicated probability distributions in Eqs. (4) and (7), since, if sufficiently good
models can be found, it follows from Markov process theory, as discussed above,
that the distributions of the innovations are products of Gaussians. Then the
corresponding log-likelihoods are given for x by

L(x) = log p(x1, . . . , xNt ) = log p(ε1(x |x), . . . , εNt (x |x))

= −1

2

(
Nt log σ 2

ε(x |x) +
Nt∑

t=1

ε2
t (x |x)

σ 2
ε(x |x)

+ Nt log(2π )

)
, (17)

for y by a corresponding expression and for (x, y) by

L(x, y) = log p((x1, y1), . . . , (xNt , yNt ))

= log p((ε1(x |x, y), ε1(y|x, y)), . . . , (εNt (x |x, y), εNt (y|x, y)))
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= −1

2

(
Nt log |Sε(x,y|x,y)| +

Nt∑

t=1

(εt (x |x, y), εt (y|x, y))

× S−1
ε(x,y|x,y) (εt (x |x, y), εt (y|x, y))† + 2Nt log(2π )

)
. (18)

Here σ 2
ε(x |x) denotes the variance of the innovation process for the case of a

predictive model for x only; and Sε(x,y|x,y) denotes the covariance matrix of the
bivariate innovation process for the case of a predictive model for (x, y). Note that,
if x and y are replaced by the corresponding innovations, the sample covariance
matrix defined in Eqs. (1) and (2) corresponds to Sε(x,y|x,y), therefore the same
structure is chosen:

Sε(x,y|x,y) =
(

σ 2
ε(x |x,y) σε(x |x,y) σε(y|x,y) r (ε(x), ε(y))

σε(x |x,y) σε(y|x,y) r (ε(x), ε(y)) σ 2
ε(y|x,y)

)
.

(19)
Here again we have defined a normalised linear correlation coefficient

r
(
ε(x), ε(y)

)
, analogous to Eq. (3), in order to describe instantaneous correla-

tions between the innovations ε(x |x, y) and ε(y|x, y).
If we replace in Eqs. (17), (18) and (19) the parameters σε(x |x), σε(y|y), σε(x |x,y),

σε(y|x,y) and r
(
ε(x), ε(y)

)
by their appropriate maximum-likelihood estimators and

insert the results into Eq. (8), we obtain

I (x, y) = −1

2
Nt

(
log(1 − r2(ε(x), ε(y)))

+(
log σ 2

ε(x |x,y) − log σ 2
ε(x |x)

) + (
log σ 2

ε(y|x,y) − log σ 2
ε(y|y)

))
; (20)

here for notational convenience we have abstained from denoting the estimators
of the parameters in a different way than the parameters themselves. A detailed
derivation of Eq. (20) can be found in Appendix A.

Strictly speaking, we have been ignoring so far that for the first data points
x1, x2, . . . , x p (where p is the model order) no optimal predictions can be per-
formed due to lack of a sufficient number of previous points, so the corresponding
contribution to the likelihood has to be calculated by different methods;(32) but
for small p and sufficiently large Nt this missing contribution can usually be
neglected.

Note that Eq. (7) can be regarded as the likelihood ratio test (LRT) statistic
of the null hypothesis of independence of the time series xt and yt .(13) By Eq. (20)
possible deviations from independence are decomposed into three components,
the first describing instantaneous correlations between the innovations of x and y
(quantified by r (ε(x), ε(y))), while the second and the third describe dependence
of x on the past of y and vice versa. If knowing the past of y does not improve
predictions of x , and vice versa, the mutual information can still be non-zero,
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as given by the first term on the rhs of Eq. (20); however, since any estimates
of the mutual information obtained from actual finite samples will follow a χ2-
distribution (as it is usually the case for any LRT statistics in the null case), it is
to be expected that even in this case there will be a small positive bias resulting
from the second and third terms on the rhs of Eq. (20). In contrast to this, in
the non-null case the estimate of mutual information can be expected to follow a
Gaussian distribution).(33)

3.2. Calculation of Innovations

The time series of innovations εt (x |x), εt (y|y), εt (x |x, y) and εt (y|x, y)
are obtained by fitting causal dynamical models to the data (xt , yt ); linear or
nonlinear model classes may be employed, depending on the properties of the
data. Nonlinear modelling will be necessary, if the distribution of the data displays
deviations from Gaussianity; this nonlinearity can be incorporated either directly
in the model for the dynamics, or in a static observation function through which
the underlying dynamics was observed, or in a combination of these two cases. The
main classes of deviation from Gaussianity are given by heavy-tailed distributions,
thin-tailed distributions and asymmetric distributions. In its full generality the task
of identifying an optimal model may be very demanding, if not infeasible, but it
can be expected that in many cases sub-optimal approximations will be sufficient.
The class of linear models represents a convenient first-order approximation;
experience has shown that in a substantial number of cases even this model class
provides sufficient whitening.(34) In this paper we will focus exclusively on the
case of linear modelling.

A specific model is characterised by its structure (or, equivalently, by belong-
ing to a specific model class) and by a set of data-dependent parameters, collected
in a parameter vector ϑ . The univariate linear AR model for the dynamics of a
state variable ξ is given by

ξt = µ +
p∑

t ′=1

at ′ξt−t ′ + et , (21)

where p denotes the positive integer model order, µ denotes a constant intercept
term (allowing for non-zero mean of ξt ), and et represents the dynamical noise term
which drives the dynamics; the variance of et is denoted by σ 2

e . The parameter
vector for this model is given by ϑ = (µ, a1, . . . , ap, σ

2
e ). On the basis of this

model the innovations can be estimated from given data xt by

εt (x |x) = xt −
(

µ +
p∑

t ′=1

at ′ xt−t ′

)
; (22)
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the variance of the innovations εt (x |x) provides a sample estimate for σ 2
e . For the

case of a linear bivariate AR model for the state variables (ξ, η)† the corresponding
model is given by

(
ξt

ηt

)
=

(
µξ

µη

)
+

p∑

t ′=1

At ′

(
ξt−t ′

ηt−t ′

)
+

(
et (ξ )
et (η)

)
, (23)

where the dynamical noise term is represented by (et (ξ ), et (η))†; its (2 × 2) co-
variance matrix is denoted by Se(ξ,η). The parameter vector ϑ for this model
consists of the intercept terms (µξ , µη), all elements of the transition matrices At ′

and the three independent elements from Se(ξ,η). The estimator of the innovations
(εt (x |x, y), εt (y|x, y))† for data xt and yt (representing ξ and η) follows in analogy
to Eq. (22). From now on we will express models always in terms of observed data
and estimated innovations (instead of the not directly accessible “true” driving
noises et ), as in the example of Eq. (22).

The preferred method for choosing an appropriate model class and for fitting
the parameters is maximisation of the likelihoods, as given by Eqs. (17) and
(18). However, it should be mentioned that when comparing the performance of
different model classes, having different numbers of data-dependent parameters
(i.e. different dimension of ϑ), the model class with the larger number of data-
dependent parameters will typically achieve the better likelihood, and therefore
overfitted models will result. This phenomenon can be interpreted by stating that
the likelihood represents a biased estimator of Boltzmann entropy, Eq. (6) (where
pi represents the true distribution of the quantity to be predicted, and qi represents
the predictive distribution).(35) Based on estimating this bias, corrections to the
likelihood have been proposed, such as the Akaike Information Criterion (AIC)
or the Bayesian Information Criterion (BIC).(36) Cross-validation represents an
alternative approach to avoiding overfitting; it has been proved that minimisation
of AIC and cross-validation are asymptotically equivalent.(37) In this paper we will
employ minimisation of AIC for the purpose of model comparison.

Remembering that in general there is the possibility of choosing between
various different model classes for whitening, such as classes based on different
nonlinear functions or different state space representations, we note that conse-
quently the innovations are not uniquely defined, a phenomenon which at first sight
may appear problematic. We would like to remark that the situation is not different
for the case of the nonparametric estimators of probability distributions mentioned
earlier, such as histogram or kernel estimators: Also for these methods the results
will depend on various design choices, such as kernel functions, bandwidths, bin
widths, etc.
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4. MODELLING SPATIOTEMPORAL DATA

So far we have discussed the case of only two random variables x and y;
now we shall turn to the general case of spatiotemporal dynamics. Data which
depend both on time and on space can be modelled by MAR models; we will now
describe how such models can be formulated and simplified for high-dimensional
situations (i.e. data covering a large number of grid points), and we will discuss an
approximative approach to modelling the covariance matrix of the driving noise
of MAR models.

4.1. Multivariate AR Modelling: General Case

We assume that a discretisation of physical space into a rectangular grid is
used, and that the grid points are labelled by an index v, such that the measurement
consists of scalar time series x (v)

t for each grid point. Let xt and εt (x) denote the
column vectors formed of the data x (v)

t and the innovations εt (x (v)) for all grid
points, respectively, and let Nv denote the total number of grid points.

In general form the dynamics of such systems may be described by nonlinear
MAR models; the linear case is given by the generalisation of Eq. (23), such that
the corresponding innovations are estimated by (see Eq. (22))

εt (x) = xt −
(

µ +
p∑

t ′=1

At ′xt−t ′

)
, (24)

where the Nv-dimensional intercept vector µ, the set of the Nv × Nv transition
matrices At ′ , t ′ = 1, . . . , p, and the Nv(Nv − 1)/2 independent elements of the
covariance matrix Sε(x) = E

(
εt (x)εt (x)†

)
form the parameter vector ϑ . For each

pair of grid points (u, v) the corresponding elements of the transition matrices
(At ′)uv and (At ′ )vu describe the dynamical (i.e., delayed) interactions between these
two grid points, while the instantaneous correlations are described by (Sε(x))uv ≡
(Sε(x))vu . The total number of parameters in this model (i.e. the dimension of ϑ),
to be estimated from the data, is given by

Npar = Nv + pN 2
v + 1

2
Nv(Nv − 1). (25)

Efficient methods for estimating the parameters of Eq. (24) have been pro-
posed by Levinson,(38) Whittle(39) and Neumaier and Schneider.(40) The special
case of a model of first order, p = 1, forms the basis for the method known as
Principal Oscillation Pattern (POP) analysis(41) which has found widespread ap-
plication in geophysics and related fields. This method is based on the analysis of
the eigenvalues of the first-order transition matrix A1; depending on whether
these eigenvalues are real numbers or complex conjugated pairs, they corre-
spond to (stochastically driven) relaxator or oscillator modes of the underlying
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spatiotemporal dynamics. This method has been generalised to MAR models of
higher order, p > 1, by Neumaier and Schneider.(40)

However, it is a well-known disadvantage of MAR models that the number
of parameters Npar from Eq. (25) may easily become very large, thereby leading
to overparametrised, non-parsimonious models. Depending on the resolution of
the spatial discretisation (e.g., the number of spatially distinct measurement sites),
Nv may be a large number; if furthermore the length of the available time series
Nt is only short (a common situation in many fields of application), it may easily
occur that Npar assumes a value comparable to (or even excessing) the total num-
ber of data values, thereby rendering reliable estimation of parameters infeasible.
According to a generally accepted guideline obtained from practical experience,
the number of parameters to be estimated should not exceed a threshold of ap-
proximately 10% of the number of available data values. For this reason we will
now discuss a parsimonious variant of MAR modelling.

4.2. Multivariate AR Modelling: Parsimonious Approach

For most spatially extended physical systems the assumption is justified that at
sufficiently short time scales interactions will take place only over short distances,
therefore we propose to restrict the dynamics to local neighbourhoods: As a
first-order approximation we assume that each grid point will interact directly
only with its immediate spatial neighbours on the grid. Most elements of A1

become zero by this assumption, i.e. A1 assumes a sparse structure. As a further
simplification, motivated by regarding the spatially and temporally discrete model
as an approximation of a (stochastic) partial differential equation, it is reasonable
to limit the interaction between different grid points to the first lag, i.e. to set all
off-diagonal elements of At ′ , t ′ > 1, to zero. The diagonal elements, describing
the dependence of each grid point on its own past, may in general be non-zero up to
a lag (a model order) t ′ = p > 1. This situation corresponds to the approximation
of a pth-order time derivative in a partial differential equation.

For a single grid point v the temporally whitened innovations result as

εt

(
x (v)

) = x (v)
t −

⎛

⎝µ(v) +
p∑

t ′=1

a(v)
t ′ x (v)

t−t ′ +
∑

u ∈N (v)

b(v,u)
1 x (u)

t−1

⎞

⎠ , (26)

where a(v)
t ′ , t ′ = 1, . . . , p, and b(v,u)

1 denote the parameters for self-interaction and
neighbour interaction, respectively, N (v) denotes the set of labels of the neighbours
of grid point v, and µ(v) is the constant intercept for time series x (v)

t . In analogy
with Eq. (22), we should have denoted the innovations in Eq. (26) by εt (x (v)|x (v))
or possibly εt (x (v)|x (v), xN (v)) instead of εt (x (v)), but in order to avoid excessively
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complicated notation we will from now on refrain from explicitly stating the
conditioning on the past of the same grid point, and possibly its neighbours.

As a generalisation we mention the possibility that in Eq. (26) also the model
order p could be chosen differently for each grid point, p = p(v), but in this paper
we will not explore this option further. Rather will we employ a common value for
p for all grid points, which could be obtained by minimisation of an information
criterion such as AIC or BIC; alternatively it may be argued that p should be set
at most to 2, since higher orders of a time derivative would be unusual in partial
differential equations describing excitable media.

This model can be interpreted as a decomposition of the high-dimensional
dynamical system described by Eq. (24) into a set of coupled low-dimensional
dynamical systems, each of which is focussed on one grid point; the influence
of the neighbouring grid points is treated as an additional external disturbance,
represented by the neighbourhood term. It should be stressed that when analysing
spatiotemporal data with a view at the connectivity structure of the underlying
system, we are not interested in the correlations between pairs of neighbouring grid
points, since we regard their presence as natural; but rather will we be interested
in correlations between pairs of grid points separated by larger distances, since
they may represent some faster mode of interaction which is not described by the
basic MAR model.

Given the data x (v)
t , the parameters a(v)

1 , . . . , a(v)
p , b(v,u)

1 and µ(v) can be esti-
mated separately for each grid point v by the linear least-squares method (which
under the assumptions of Gaussian innovations and linear dynamics is equivalent
to full likelihood maximisation), and a series of innovations εt (x (v)) will result as
an estimate of the noise process driving the local dynamics of grid point v. This
simple and efficient pointwise model fitting approach replaces the usual methods
for fitting of full MAR models, as mentioned above, but it does so at the cost of
neglecting the need to estimate also the off-diagonal elements of the covariance
matrix of the driving noise, Sε(x). We will deal with this point in the next section.

4.3. Spatial Whitening

In the previous section simplifications have been introduced by which most
of the elements of the transition matrices At ′ could be set to zero. Now a similar
step has to be accomplished for the covariance matrix Sε(x). In general, it has to be
expected that the off-diagonal elements of Sε(x) are non-zero, i.e. that instantaneous
mutual correlations between the innovations εt (x (v)) at different grid points are
present; this will be true especially for neighbouring grid points. But if this is
the case, the decomposition approach described in the previous section is invalid,
since it assumes uncorrelated noises and provides estimates only for the diagonal
elements σ 2

ε(x (v)).
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Note that here we are dealing with instantaneous (as compared to the sam-
pling time of the data), purely spatial correlations, which cannot be described by
dynamical models like Eq. (26); therefore a separate step of spatial whitening is
needed. We describe this step by an instantaneous linear transform applied to the
original data

x̃t = Lxt . (27)

Various approaches for the choice of the matrix L may be explored, and again
it will depend on the particular data which choice provides best spatial whitening;
as a first approximation we propose to employ a Laplacian matrix

L =
(

INv
− 1

k
N

)
, (28)

where INv
denotes the Nv × Nv unity matrix, and N denotes a Nv × Nv matrix

having Nvu = 1 if u belongs to N (v), and 0 otherwise. This transform corre-
sponds to a discrete second-order spatial derivative; derivatives are natural tools
for whitening. The parameter k in Eq. (28) should be chosen as k = 6, if for each
grid point six spatial neighbours are considered; but the parameter may also be
chosen in a data-adaptive way, e.g. by maximum-likelihood, if a corresponding
correction term is added to the likelihood (see Eq. (31)). A practical advantage of
choosing a value for k different from the number of neighbours is that otherwise
L may be very close to singular.

We remark that the class of autoregressive integrated moving-average
(ARIMA) models for time series modelling(32) results from a similar approach
of taking a discrete derivative prior to any further analysis, but in the case of
ARIMA this derivative is applied in the time domain, while here we are applying
it to the spatial domain.

If consequently we replace x by x̃, Eq. (24) becomes

εt (x) = L−1εt (x̃) = xt −
(

L−1µ +
p∑

t ′=1

L−1At ′Lxt−t ′

)
, (29)

where Sε(x̃) = E
(
εt (x̃)εt (x̃)†

)
is expected to be diagonal or at least closer to di-

agonal than Sε(x). Therefore this approach to spatial whitening is equivalent to
modelling the non-diagonal covariance matrix of the innovations corresponding
to the original data by

Sε(x) = L−1Sε(x̃)(L−1)†; (30)

recently a similar model has also been applied successfully for estimating unob-
served brain states through spatiotemporal Kalman filtering.(42,43) Future research
may succeed in identifying superior approaches to model instantaneous spatial cor-
relations in spatiotemporal data. Clearly, depending on the data, this transformation
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will not remove all correlations from the εt (x (v)), but it removes those correla-
tions which are merely an artifact of spatial neighbourhood and therefore may
be regarded as “trivial.” Remaining correlations can be expected to contain more
relevant information about the underlying system, i.e. its connectivity structure,
as will be demonstrated in the next section.

Note that after the application of the Laplacian transform to the data, a
correction needs to be applied to the log-likelihood, which is given by

L(x1, . . . , xNt ) = L(x̃1, . . . , x̃Nt ) + (Nt − p) log |L|. (31)

The number of parameters of the model given by Eq. (26) follows as

Npar = Nv

(〈
card (N (v))

〉 + p + 1
) + 1, (32)

where
〈
card (N (v))

〉
denotes the average number of neighbours of a grid point, and

the final +1 counts the parameter k of the Laplacian.
In practice, once the data has been spatially whitened by multiplication with

the Laplacian L, the model fitting can be performed as already described above,
without paying any further attention to the spatial whitening step. This remains
true for the case that within the multivariate data set the time series of a given pair
of (typically non-neighbouring) grid points v and w are modelled, in addition to
the model terms already present in Eq. (24) for each of the two grid points, by
some kind of direct interaction terms, e.g. as decribed by Eq. (23). In this case
the resulting series of conditional innovations can be denoted by εt (x̃ (v)|x̃ (w)) (and
vice versa). From now on we will omit the tilde and use the following shorthand
notations: εt (v) := εt (x (v)) and εt (v|w) := εt (x (v)|x (w)); in the same way, the corre-
sponding variances will be abbreviated as σ 2

ε(v) := σ 2
ε(x (v)) and σ 2

ε(v|w) := σ 2
ε(x (v)|x (w)).

5. ANALYSING CONNECTIVITY IN INNOVATION TIME SERIES

With this section we will complete the theoretical part of this paper by
discussing how further information can be extracted from the innovations resulting
from spatiotemporal modelling. For pairs of grid points within spatiotemporal data
sets a modification of the modelling presented so far will be introduced; based on
this modified model we will derive a parametric estimator of mutual information.

5.1. Spatial Correlations in the Innovations

If a spatiotemporal time series would be transformed to completely inde-
pendent innovations (with respect to time and space), this would mean that
all available dynamical information had successfully been extracted from this
time series and condensed into the model, as represented by both the dynam-
ical model and the spatial whitening transformation (i.e. the covariance matrix
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of the innovations). Clearly for real-world data, this can never be achieved com-
pletely. As an example, there may exist very fast connections between grid points
which are not neighbours, but separated by some larger distance; these would
give rise to additional instantaneous spatial correlations that are not removed by
multiplication with the Laplacian matrix L. We propose to regard the possibil-
ity of such incidents not as a weakness of the parsimonious modelling approach
discussed so far, but rather as a strength, since it enables us to explore deeper
layers of the spatiotemporal dynamics. By removing a first layer of spatial and
temporal correlations we obtain a transformed representation of the original data
set, within which we may be able to detect much more subtle correlations. This
line of argumentation can be regarded as an illustration of the mathematical ar-
gument of Sec. 3.1 which established the equality of p

(
ε1(x), . . . , εNt (x)

)
and

p(x1, . . . , xNt ).
Given the innovation time series εt (x), we may look for remaining instanta-

neous spatial correlations between pairs of grid points (v,w) by computing the
coefficient of linear correlation r (ε(v), ε(w)) according to Eq. (3), or by estimating
the mutual information I (ε(v), ε(w)) according to Eq. (4), thereby making use of
the fact that temporal correlations have been removed by the temporal whitening
step.

Alternatively, as mentioned already at the end of Sec. 4.3, the modelling of
the data (i.e. the generation of the innovations) may be performed by including
additional direct interaction terms, either by performing a full bivariate model
fitting step for a given pair of grid points, following Eq. (23), or at least by
allowing for a non-zero value of the covariance term E (εt (v)εt (w)) within Sε(x).
If our aim is to capture instantaneous spatial correlations, the latter approach is
sufficient; in this case those elements within Sε(x) which correspond to grid points
v and w can be defined as in Eq. (19).

Again the model fitting should be done by maximisation of likelihood,
but in this case the linear least-squares method cannot be applied, and esti-
mating the additional covariance term in Sε(x) requires numerical optimisation.
Since performing numerical optimisation steps for all pairs of grid points would
consume considerable time, we will in the next section present an approxima-
tive method which renders this problem accessible to the linear least-squares
method.

5.2. Approximative Model for Spatially Correlated Innovations

Consider for a moment again the case of modelling a pair of (typically
non-neighbouring) grid points v and w within a full spatiotemporal model,
without assuming a non-zero covariance term of the corresponding innovations
E (εt (v)εt (w)); then each grid point is modelled according to Eq. (26), and we have
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a bivariate sub-model with innovations

εt (v) = x (v)
t −

⎛

⎝µ(v) +
p∑

t ′=1

a(v)
t ′ x (v)

t−t ′ +
∑

u ∈N (v)

b(v,u)
1 x (u)

t−1

⎞

⎠

εt (w) = x (w)
t −

⎛

⎝µ(w) +
p∑

t ′=1

a(w)
t ′ x (w)

t−t ′ +
∑

u ∈N (w)

b(w,u)
1 x (u)

t−1

⎞

⎠ . (33)

Motivated by the work of Geweke,(44) we suggest to represent instantaneous
correlations between x (v)

t and x (w)
t , i.e. non-zero E (εt (v)εt (w)), by introducing an

additional instantaneous coupling term into the bivariate model, which yields a
new bivariate sub-model with innovations

εt (v) = x (v)
t −

⎛

⎝µ(v) +
p∑

t ′=1

a(v)
t ′ x (v)

t−t ′ +
∑

u ∈N (v)

b(v,u)
1 x (u)

t−1

⎞

⎠

εt (w|v) = x (w)
t −

⎛

⎝µ(w) +
p∑

t ′=1

a(w)
t ′ x (w)

t−t ′ +
∑

u ∈N (w)

b(w,u)
1 x (u)

t−1 + cvw x (v)
t

⎞

⎠ . (34)

Note that, unlike with the standard definition of autoregressive models, here
we use the state value of one grid point at time t in order to model the value of
another grid point at the same time t .

The additional coupling parameter cvw can be estimated conveniently by
the same linear least-squares method which is also employed for estimating the
other parameters in Eq. (34), thus avoiding computationally more demanding
numerical optimisation. In this model the covariance matrix of the innovations
is guaranteed to be diagonal; its diagonal elements shall be denoted by σ 2

ε(v) and

σ 2
ε(w|v). However, due to the inclusion of the instantaneous interaction term this

covariance matrix does not directly refer to the original state variables x (v)
t and x (w)

t ,
but to transformed variables; see Appendix B for a discussion of the corresponding
non-diagonal covariance matrix of the original x (v)

t and x (w)
t .

It has to be emphasised that the model underlying Eq. (34) is not equivalent to
the original bivariate modelling, corresponding to Eq. (23), but rather it represents a
useful approximation; in Appendix B we will show that the coupling parameter cvw

approximately corresponds to the coefficient of linear correlation r (ε(v), ε(w)).
Also the result of the least-squares model fit does not represent a maximum-
likelihood fit, although we expect that in most cases it will have very similar
properties.

In Eq. (34) the two grid points v and w are no longer treated in a symmetrical
way, since x (v)

t is modelled only by its own past (and the past of its neighbours),
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whereas x (w)
t is modelled by the past of both x (v)

t and x (w)
t . Experience has shown

that if the roles of v and w are interchanged, in most cases the results remain
essentially unchanged; however, in certain situations this remark does no longer
apply, e.g. when the variances of the original data x (v)

t and x (w)
t differ very much. In

such cases we have adopted the approach to choose out of the two possibilities the
model which achieves the better likelihood. In Appendix B an explicit expression
for the likelihood of model Eq. (34) is derived.

As already mentioned, it would also be possible to augment the model Eq. (34)
by time-lagged interaction terms, corresponding to the full bivariate modelling of
Eq. (23); by such terms further deviations of the innovations εt (x) from the ideal
condition of being completely white and mutually independent could be modelled.
In particular, this generalisation would offer the possibility of quantifying directed
correlations between grid points, which can be interpreted as measuring causal
connectivity (while by definition instantaneous correlations are non-directed).

Through direct comparison of the likelihoods obtained by models (33) and
(34) it can be decided whether for given data the inclusion of the interaction term
improves the model; this step can be regarded as a Likelihood Ratio Test (LRT).(45)

Based on Eqs. (9) and (10), the LRT test statistic can also be used for deriving an
estimator of mutual information; following this path we obtain

I
(
x (v), x (w)

) = (Nt − p)
2cvw σ 2

ε(v),ε(w|v) − c2
vw σ 2

ε(v)

2σ 2
ε(w|v)

, (35)

where we have defined σ 2
ε(v),ε(w|v) = E (εt (v)εt (w|v)); see Appendix B for details

on the derivation of this result. This estimator differs from most other currently
known estimators by the complete absence of histograms or similar non-parametric
elements.

However, it has to be mentioned that this estimator has the disadvantage of
sometimes producing negative estimates of mutual information; some discussion
on this point can be found in Appendix B. For small values of mutual information
also nonparametric estimators are known to occasionally produce negative results
which are due to statistical fluctuations.(21)

6. COMPARISON WITH INDEPENDENT COMPONENT ANALYSIS

The concept of whitening is also playing an important role in other approaches
for the analysis of multivariate time series, such as Independent Component Anal-
ysis (ICA):(46) As a part of this method commonly a linear preprocessing step is
applied to the multivariate data, also called “whitening,” such that the channels
become mutually uncorrelated; they are also rescaled in order to have unit vari-
ance, such that the sample covariance matrix of the transformed data becomes a
unity matrix. While the rescaling step has to be regarded as problematic, since in
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most cases it will deteriorate the signal-noise ratio of the data, it can be said that
otherwise this step roughly corresponds to the multiplication with the Laplacian
and the inclusion of instantaneous terms in Eq. (34), i.e. to the identification of
the instantaneous correlation structure of the driving noise.

However, the concept of temporal whitening does not have a counterpart
in the standard ICA methodology, since the description of data, as provided by
ICA, ignores the constraint of causal modelling, i.e. the direction of time. The
numerous ICA algorithms which have been proposed, differ in whether they take
the temporal ordering of the data into account; while the majority of algorithms
ignores the temporal ordering completely, some approaches aim at simultaneously
diagonalising instantaneous and lagged covariance matrices,(47) but also these
matrices do not depend on the direction of time.

Most ICA algorithms are based on the assumption of the existence of a
set of source components st = (s(1)

t , . . . , s(Ns )
t ), which are assumed to be mutually

independent and to have non-Gaussian distributions, such that the data is modelled
as

xt = Cst , (36)

where C denotes the Nv × Ns mixing matrix; frequently Nv = Ns is chosen, but
the case Nv > Ns is also possible, as in Factor Analysis.(51) Both C and st are
unknown and need to be estimated; in many ICA algorithms the assumption of
non-Gaussianity of all components s(v)

t (except for at most one) is essential.
Obviously, the approach proposed in this paper differs distinctively from ICA,

since it rests on the theorem from Markov process theory mentioned above, ac-
cording to which a wide class of dynamical systems can be (temporally) whitened
into Gaussian innovations, while deviations from Gaussianity in the data are as-
sumed to be a result of nonlinear elements in the dynamics or in the observation
process (see Sec. 3.1). Innovations at different grid points are not assumed to be
independent or uncorrelated, but rather an explicit model for their non-diagonal co-
variance matrix is formulated. In the light of the theorem on Gaussian innovations,
we would regard the whitening as unsuccessful if the resulting innovations were
found to have a clearly non-Gaussian distribution (but, as mentioned in Sec. 3.1,
a Poisson noise component may be accepted).

7. APPLICATION TO SIMULATED SPATIOTEMPORAL DYNAMICS

We will now illustrate the ideas presented in this paper by application to data
generated by a simulated dynamical system of moderate complexity. The design of
our simulation is motivated by earlier work of Schreiber,(48) but while he employed
a strongly nonlinear deterministic system, we choose a stochastic system which
is based on applying a sigmoid nonlinearity to a linear autoregressive structure;
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the case of employing a stochastic version of Schreiber’s system will be briefly
discussed in Sec. 8.

This section discusses the definition of the system, the method to produce
simulated data from the system and the results of analysing this data by the
whitening approach, using the parsimonious MAR model, as presented above;
for comparison we will also discuss the cases of analysing the data with a full
MAR model (having a non-sparse transition matrix) and with standard ICA
algorithms.

7.1. Chain of Coupled Stochastical Oscillators

The system consists of a one-dimensional chain of Nv nodes (representing
“grid points”) with periodic boundary conditions. At each node v, v = 1, . . . , Nv ,
a local dynamical process evolves, defined by

y(v)
t = tanh

(
a(v)

1 y(v)
t−1 + a(v)

2 y(v)
t−2 + b(v,v−1)

1 y(v−1)
t−1 + b(v,v+1)

1 y(v+1)
t−1

)
+ η

(v)
t .

(37)
By Ht = (η(1)

t , . . . , η
(Nv )
t ) the vector of driving noise terms shall be denoted;

its covariance is chosen as nondiagonal, following the form given by Eq. (30); the
diagonal matrix corresponding to Sε(x̃) is created from a set of node-dependent

standard deviations σ
(v)
dyn which are generated by drawing Nv numbers from a

Gaussian distribution N (χη, ση) with χη � ση and additionally smoothing this
set along the chain of nodes (observing periodic boundary conditions).

The sets of left and right neighbour interaction parameters b(v,v−1),

b(v,v+1), v = 1 . . . , Nv (again observing periodic boundary conditions), are cre-
ated in the same way as the set of standard deviations σ

(v)
dyn. By choosing slightly

different means χb−, χb+ for the Gaussian distributions of left and right neigh-
bour interaction parameters, asymmetries can be introduced into the system, and
more “interesting” dynamics results. The local dynamical parameters a(v)

1 , a(v)
2 are

chosen according to the rules for designing stable second-order autoregressive
processes, i.e. such that the roots of the corresponding characteristic equation

(
λ(v)

)2 − a(v)
1 λ(v) − a(v)

2 = 0, (38)

which shall be written as

λ
(v)
± = r (v) e±iϕ(v)

, (39)

lie within the unit circle in the complex plane (but the resulting dynamics will
become more “interesting,” if a few moduli are allowed to be slightly larger than
one). Moduli r (v) and phases ϕ(v) can be chosen independently from suitably
chosen distributions; we have decided to choose r (v) from a Gaussian distribution
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N (χr , σr ) and ϕ(v) from the asymmetric distribution

p(ϕ) = − log
(

pU (ϕ)(1 − e−π ) + e−π
)
, (40)

where pU (ϕ) is the uniform distribution on the interval [0, 1]. Parameters then
follow by

a(v)
1 = 2 r (v) cos ϕ(v), a(v)

2 = − (
r (v)

)2
. (41)

Again smoothing along the chain is applied, in order to enforce smoothly
varying properties of local dynamics.

The hyperbolic tangent in Eq. (37) has been introduced following the example
of the sigmoid nonlinearity in Neural Network models; its main purpose is to
prevent divergence of the dynamics which may arise due to some roots λ

(v)
± lying

outside the unit circle or due to feedback between neighbours. Furthermore this
pronounced nonlinearity contributes to creating “interesting” dynamics.

Instantaneous long-distance correlations can be introduced into this system
by choosing two (non-neighbouring) nodes v and w and driving them by a common
noise process (but preserving the local variances of the two nodes)

η̃
(m)
t = σ

(m)
dyn

2

(
η

(v)
t

σ
(v)
dyn

+ η
(w)
t

σ
(w)
dyn

)
, m = v,w; (42)

the resulting instantaneous long-distance correlations may be termed “intrinsic,” in
contrast to those which occur either due to the dynamical coupling of nodes within
local neighbourhoods, or as a result of pure coincidence, as it is not uncommon in
short time series.

This system implements a coupled-map lattice consisting of stochastically
driven oscillators;(14) after allowing for a transient to die out, data is sampled from
the system by recording noisy observations of the states of each node:

x (v)
t = y(v)

t + n(v)
t , (43)

where the observational noise n(v)
t is sampled fromN (0, σ

(v)
obs); the node-dependent

standard deviations σ
(v)
obs are drawn from N (χn, σn) (where χn � σn) and after-

wards smoothed along the chain. Observation noise is uncorrelated between nodes.

7.2. Results of Simulation Study

We implement the dynamical system described in the previous section
with Nv = 64 nodes. Parameters of the Gaussian distributions are chosen
as (χη, ση) = (0.25, 0.05), (χb−, σb−) = (0.55, 0.25), (χb+, σb+) = (0.45, 0.2),
(χr , σr ) = (0.5, 0.2) and (χn, σn) = (0.1, 0.01). Grid points 16 and 41 are cor-
related according to Eq. (42). The system is simulated, starting from random
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Fig. 1. Simulated dynamics for a stochastic coupled-map chain consisting of 64 nodes; upper panel:
amplitude (colour-coded) vs. node number (vertical axis) and time (horizontal axis); periodic boundary
conditions apply to the vertical axis. Lower panel: time series of amplitudes at nodes 16 (red) and 41
(green) vs. time.

initial conditions, and after waiting for 1000 time points in order to allow for
transient behaviour, a multivariate data set of Nt = 512 points length is recorded
from all 64 nodes, including observational noise. The data is displayed in Fig. 1;
the upper panel shows the time series of all nodes along the chain, while the time
series of the intrinsically correlated nodes 16 and 41 are shown explicitly in the
lower panel. In the figure it can be seen that for the selected values of parameters
groups of nodes switch randomly between predominantly positive or negative val-
ues, thereby forming coherent spatiotemporal patterns. Furthermore it can be seen
that, at least with respect to visual inspection, the correlation between nodes 16
and 41 is not very pronounced.

The same point is demonstrated in Fig. 2 where for all pairs of nodes (v,w)
the linear correlation measure r (v,w) := r (x (v), x (w)) according to Eq. (3) (upper
panel) and the mutual information I (v,w) := I (x (v), x (w)) according to Eq. (4)
(lower panel) are shown. The estimate of I (v,w) is obtained by using a MATLAB
implementation of a histogram-based estimator, provided by Moddemeijer.(22)

Note that in this figure both quantities are calculated directly for the data x (v)
t . The
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Fig. 2. Linear correlation matrix (upper panel) and mutual information matrix (lower panel) for all
pairs of nodes, estimated from the multivariate time series shown in Fig. 1. Mutual information was
estimated by a histogram estimator. In both panels values on the diagonal have been omitted.
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matrix of linear correlations shows broad areas of correlated or anti-correlated
nodes, and the pair (16, 41), producing a value of r (16, 41) = 0.5006 (while r is
bounded by definition to the interval [−1,1]), cannot be easily distinguished from
these areas, although its correlation is of completely different origin than all other
correlations which are visible in the figure. The matrix of mutual information
reproduces some of the features of the matrix of linear correlations, but without
distinguishing between correlation and anti-correlation; in this case the intrinsi-
cally correlated pair produces a rather low value of I (16, 41) = 0.1286 (here it
should be mentioned that the typical scaling of this estimate depends on certain
design choices of the mutual information estimator which we shall not discuss
here in detail).

Clearly the particular estimates obtained for linear correlation and mutual in-
formation are to be regarded as not very reliable, since the underlying time series is
rather short, Nt = 512. Repeating the analyses 1000 times for different realisations
generated by the same system (each of 512 points length) yields, in terms of means
m(.) and standard deviations s(.), for linear correlation m (r (16, 41)) = 0.2536
and s (r (16, 41)) = 0.1741, and for mutual information m (I (16, 41)) = 0.0841
and s (I (16, 41)) = 0.0344, i.e. fairly broad distributions. Note that in real life fre-
quently the option of repeating analyses for many equivalent time series recorded
under exactly preserved conditions may not be given.

We would like to briefly discuss the distribution of the simulated data. In
Fig. 3 skewness and kurtosis are shown for the time series recorded for each
node (open circles). It can be seen that some nodes display pronounced skewness,
i.e. asymmetric distributions; and while many nodes display negative values of
kurtosis, some reach sizable positive values. These results show a substantial
deviation from Gaussianity, which is a result of the sigmoid nonlinearity in the

Fig. 3. Skewness (left panel) and kurtosis (right panel) vs. node number (horizontal axis) calculated
from the multivariate time series shown in Fig. 1 (open circles) and from the corresponding innovations
(black dots).
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dynamics. Negative values of kurtosis correspond to thin-tail behaviour, as it
should be expected for a sigmoid function, but it is obvious that not all nodes follow
this pattern, since the distribution of some nodes is dominated by asymmetries.

Next we perform spatial whitening by applying the transformation accord-
ing to Eqs. (27) and (28), and temporal whitening by fitting to each node the
model Eq. (26); note that this is a completely linear model, in contradiction to the
true model used for generating the data, Eq. (37). We are employing an incorrect
model class, nevertheless very good whitening can be achieved. The parameter k in
Eq. (28) is chosen as 9, although one would rather expect 2 in a one-dimensional
system; but we found that too strong spatial whitening produces spurious tem-
poral correlations (or, more precisely, anticorrelations), especially for pairs of
neighbouring nodes, therefore we recommend to avoid too high values for 1/k.

The success of the whitening transformation can be see in Fig. 4, where
again linear correlation (upper panel) and mutual information (lower panel) are
shown, but now for the innovations εt (v) of the spatial and temporal whitening
steps instead for the original data x (v)

t . In both panels the pair (16, 41) stands out
clearly against a background of very small values, assuming a correlation value
of r (16, 41) = 0.6959, while the second largest value in the matrix is 0.1560, and
a mutual information value of I (16, 41) = 0.2485, while the second largest value
is 0.0310. The values for repeating the analysis for 1000 different realisations
are for linear correlation m (r (16, 41)) = 0.6735 and s (r (16, 41)) = 0.0262, and
for mutual information m (I (16, 41)) = 0.2404 and s (I (16, 41)) = 0.0290; these
distributions are much narrower than obtained above in the case without whitening,
thereby demonstrating the degree of precision that can be achieved on the basis of
time series of only 512 points length. Note that if the innovations could be estimated
without any error, we would expect r (16, 41) = 1.0, but due to observational noise,
model imperfection and finite-sample effects this value cannot be attained. The
theoretical optimal value for I (16, 41) is given by the entropy of the common
innovations.

If we investigate the distribution of the innovations, we obtain the results
shown by dots in Fig. 3. It can be seen that for most nodes both skewness and
kurtosis are much closer to zero now; especially the pronounced asymmetries
have been removed. The values of these two quantities scatter around zero for the
set of all nodes, with mean values very close to zero, 0.0105 for skewness and
0.0175 for kurtosis. These results confirm that the whitening step has produced
approximately Gaussian innovations, despite fitting a linear model to nonlinear
data.

Furthermore we apply to each pair of nodes the model comparison given by
Eqs. (33) and (34) and compute the corresponding parametric estimate of mutual
information, given by Eq. (35); the result is shown in Fig. 5. From the figure it can be
seen that also by this method the intrinsic correlation of the pair (16, 41) is clearly
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Fig. 4. Linear correlation matrix (upper panel) and mutual information matrix (lower panel) for all
pairs of nodes, estimated from the innovations of the multivariate time series shown in Fig. 1. Mutual
information was estimated by a histogram estimator. In both panels values on the diagonal have been
omitted.
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Fig. 5. Mutual information matrix for all pairs of nodes, estimated by the parametric estimator based
on the difference of log-likelihood of pairwise model comparisons from the multivariate time series
shown in Fig. 1. Values on the diagonal have been omitted.

detected, assuming a value of I (16, 41) = 98.1332, while the second largest value
is 5.7633. Obviously the scaling of this estimate of mutual information is different
from that based on histograms, but the relative behaviour is essentially the same.
The values for a distribution of 1000 realisations are m (I (16, 41)) = 88.7080 and
s (I (16, 41)) = 21.3805.

Finally we investigate how the performance of the whitening approach in
correctly identifying intrinsically correlated voxel pairs depends on time series
length Nt and standard deviation of observational noise χn (the latter averaged
over nodes). For this purpose we formulate the null hypothesis “there is no intrinsic
correlation for the pair (16, 41)” and try to reject it based on simple ranking of
the values of r and I for all pairs of voxels: If r (16, 41) > r (v,w) for all pairs
(v,w) 	= (16, 41) the null hypothesis is rejected. Instead of the coefficient of
linear correlation r also the mutual information I , estimated by either a histogram
estimator or by Eq. (35), may be used. While repeating this procedure 500 times
(each time choosing new parameters for the simulated system according to the
distributions given above, keeping parameters of the distributions fixed at the
values given above, and choosing a new set of observation noise covariances σ

(v)
obs

from N (χn, σn), where σn = χn/10) for each pair of values of Nt and χn , we
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Table I. Estimate of time series length Nt required

for achieving probability of type-II error pII = 0.0, . . . , 0.75
for given (average) observation noise standard deviation

χn = 0.02, 0.1, 0.2, 0.4, using correlation coefficient, histogram

estimate of mutual information or parametric estimate of

mutual information (by Eq. (35))

pII = 0.0 0.25 0.50 0.75

correlation coefficient r
χn = 0.02 50 30 25 20

0.1 120 45 40 30
0.2 300 135 100 70
0.4 >700 >700 650 375

mut. inf. I (histogram estimate)
χn = 0.02 105 60 50 40

0.1 240 130 100 80
0.2 700 430 330 240
0.4 >700 >700 >700 >700

mut. inf. I (parametric estimate)
χn = 0.02 80 30 25 20

0.1 150 55 45 30
0.2 480 180 120 80
0.4 >700 >700 >700 690

Note. Values have been estimated by simulation (see text for details)
and rounded to multiples of 5.

record the number of failures to reject the null hypothesis, i.e. we measure the rate
of type-II errors pII.

When applying this analysis to estimates of linear correlation and of mutual
information obtained from original (unwhitened) data, pII is always larger than 0.9
and in most cases 1.0, in agreement with the results presented so far; for estimates
obtained from the innovations we obtain the results shown in Table 1. The table
gives the approximate length of time series Nt which is, at a given value of χn ,
required to reduce the probability of type-II error pII to a given value; values
for Nt have been rounded to multiples of 5. Note that according to Eq. (37) the
distribution of the simulated dynamics is essentially bounded by −1 ≤ y(v)

t ≤ 1;
in fact we find that the sample standard deviations of the simulated data sets
before adding observational noise scatter around a value of 0.6. This value is to be
compared with the values for χn given in the table.

From the table it can be seen that the parametric estimate for mutual informa-
tion provides better detection of intrinsic correlation than the histogram estimate,
while the linear correlation coefficient displays the best performance. In summary
it can be stated that after whitening intrinsic correlation can be detected reliably
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in time series of a few hundred points length even in the presence of strong
observational noise.

7.3. Application of Full MAR Analysis

For the purpose of comparison, we shall consider the case of fitting a full
MAR model, according to Eq. (24), to the same data as studied so far, instead
of a parsimonious model. In case of the smallest model order p = 1, as in POP
analysis, we find from Eq. (25) that the number of model parameters Npar is
18.85% of the total number of available data values Nv Nt , while p = 2 (which is
the “true” model order of this simulation) yields 31.35%, so both values exceed
the 10%-rule mentioned in Sec. 4.1; the parsimonious model Eq. (32) gives a
much more favourable ratio of 0.98%.

Ignoring this problem for a moment and fitting a MAR(2) model (i.e. a MAR
model with model order p = 2) by Whittle’s algorithm,(39) we obtain transition
matrices A1 and A2; as should be expected we find that these matrices appear
“blurred” as compared to the correct matrices employed in the simulation, i.e.
the non-vanishing values are systematically underestimated (in terms of their
absolute values; diagonal elements of A2 which should always be negative, are also
sometimes estimated as positive), while the vanishing values (in A1 all elements
referring to non-neighbouring pairs of nodes, and in A2 all off-diagonal elements)
assume non-zero values, scattering around zero. A similar remark applies to the
covariance matrix of the driving noise, Sε(x). The intrinsic correlation between
nodes 16 and 41 can be detected, also by this analysis: it appears now partly
in the corresponding off-diagonal elements of the estimate of Sε(x) (which in
the parsimonious model, due to the Laplacian transformation, corresponds to a
diagonal matrix), and partly in the remaining correlations of the innovations of
the full MAR model fit. Naturally, due to the overparametrisation, this intrinsic
correlation will easily be lost in noise, resulting either from estimation errors or
being present in the data itself.

In this simulation the data was created by a parsimonious MAR model, so it
is not surprising that a similar model shows better performance than the full MAR
model; in the analysis of real-world data it will depend on the properties of the data
and the underlying system which model is more appropriate. In systems for which
the assumption of fast local dynamics is invalid, the full MAR model may indeed
be superior. Whether the much larger amount of model parameters is justified, can
be determined by information criteria such as AIC and BIC;(36) e.g. for the example
of the simulation presented above, we find that the AIC of the MAR models of first
and second order assume values of 15158.61 and 17255.94, respectively, while
the parsimonious model assumes a much lower value of 10044.47. We remark that
the pure likelihood of the MAR models is larger than that of the parsimonious
model; however, due to their large numbers of parameters, these models are heavily
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punished by AIC for overfitting. But since in this case the number of parameters is
too large for reliable estimation of AR models anyway, compared to the number of
available data values, the parsimonious model provides a convenient alternative.

7.4. Application of ICA

It is possible to apply ICA algorithms to the simulated data shown in Fig. 1;
however, in doing so we impose the constraint of the existence of a set of non-
Gaussian independent signals, which are related to the data by a mixing matrix, as
shown in Eq. (36). The only independent signals which were involved in generating
the data, are the driving noises Ht = (η(1)

t , . . . , η
(Nv )
t ), but their relationship to the

data is of more complicated nature than described by Eq. (36), therefore these
noises cannot be retrieved by ICA; the estimation of the driving noises is the goal
of the whitening approach (assuming that observation noise can be neglected) and
requires a dynamical model of the process generating the data. Furthermore, the
available knowledge about neighbourhood relationships between nodes is ignored
by standard ICA algorithms.

If we nevertheless perform an ICA decomposition of the simulated data,
employing the “FastICA” algorithm introduced by Hyvärinen(46) (using “symmet-
ric” estimation, i.e. estimating all independent components in parallel) we obtain
the results shown in Fig. 6. The algorithm produces a set of 64 components, but
there is no preferred ordering of these components, since the spatial neighbour-
hood relationships of the data have been lost; for this reason the plot shows no
equivalent to spatial structures. In the lower panel of Fig. 6 two arbitrarily chosen
components are shown explicitly; it can be seen that they display little temporal
structure, except for one sharp spike-like maximum of each component. Upon
closer inspection it is found that such sharp extrema are present for most of the
independent components; since they never occur at the same time point for two
components, such spikes contribute to reducing the residual dependencies between
components.

Indeed, the residual correlations between the components provided by
FastICA are virtually zero: the maximum value of linear correlation among all
pairs of components is r = 5.79 × 10−16; for the residual mutual information,
using the same histogram-based estimator as before, a value of I = 0.0115 is
found. These values show that this decomposition was successful, with respect to
the underlying assumption of the ICA approach; nevertheless, the decomposition
provides no useful information about the actual dynamics of this particular system
and about its spatial correlation structures, such as the existence of one pair of
intrinsically correlated non-neighbouring nodes.

Finally, we remark that some ICA algorithms have been proposed which
are based on maximising a (log-)likelihood, as it is also the case in time series
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Fig. 6. FastICA decomposition of the data shown in Fig. (1); upper panel: amplitude (colour-coded)
vs. component number (vertical axis) and time (horizontal axis); ordering of components is arbitrary.
Lower panel: time series of amplitudes of components 1 (red) and 2 (green) vs. time.

modelling by dynamical models; since likelihood (after the bias correction against
overfitting, i.e. employing AIC or BIC, see above) represents a global measure of
the quality of models for given data, the performance of these methods can be
compared directly to time series modelling. As examples we mention the work
of Wu and Principe(49) and of Choi et al.,(50) both of which are based on the
“generalised Gaussian distribution,” a class of distributions which contains the
Gaussian distribution as a particular case. Fitting ICA models based on this class
of distributions to data bears close similarity to the likelihood-based version of
classical Factor Analysis,(51) but without the constraint of Gaussianity. By applying
an ICA algorithm based on these ideas to the same simulated data as before, we
obtain a value of AIC=24986.08. The fact that this value is much larger than the
AIC of parsimonious MAR modelling, AIC=10044.47 (thereby demonstrating
a much inferior description of the data, as compared to parsimonious MAR),
reflects partly the benefit of including dynamics into the model, i.e. of temporal
whitening, and partly the penalty for the much larger number of parameters of the
ICA model (which in this case is dominated by the N 2

v parameters in the mixing
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matrix C); but in this case even the pure likelihood of the parsimonious MAR
model is considerably larger than the likelihood of the ICA model.

8. DISCUSSION AND CONCLUSION

In this paper we have explored a new viewpoint concerning the issue of defini-
tion and estimation of mutual information between time series within multivariate
data sets sampled from spatially extended dynamical systems; the link between
mutual information and log-likelihood which we have demonstrated, applies to
the estimation of mutual information between any pair of temporally correlated
time series. We have presented a conceptually simple approach for parsimonious
spatiotemporal modelling of data, which is based on the notion of whitening with
respect to both space and time. The whitening approach proposed in this paper
can be summarised by the following steps:

1. For each time point the data vector is multiplied by the appropriate Lapla-
cian matrix (see Eqs. (27) and (28)); thereby the data is spatially whitened.

2. The resulting transformed data is modelled by a suitable MAR model (see
Eq. (26)); thereby temporal whitening is provided. For high-dimensional
time series (representing a large number of grid points in space) parsimo-
nious modelling is achieved by limiting direct interactions (i.e. non-zero
model parameters in the transition matrices) to neighbours.

3. The resulting innovations are analysed for remaining correlations; such
correlations will usually be instantaneous spatial correlations, as demon-
strated in the simulation example, but they could also involve time lags
between different spatial locations.

4. Finally there is the option of refitting the autoregressive model (i.e. re-
peating step 2), but augmented by the additional correlations identified in
step 3; an example, limited to one pair of grid points, is given in Eq. (34).

Provided the model is sufficiently successful in whitening the data, the in-
novations can be assumed to have a multivariate Gaussian distribution without
temporal or spatial correlations, therefore they represent a convenient basis for
the estimation of mutual information, and hence connectivity, as has been shown
in this paper. By exploiting this property of innovations we have derived a para-
metric estimator of mutual information, which may replace the commonly used
non-parametric estimators. But it should be stressed that the crucial point is the re-
moval of spatiotemporal correlations, i.e. the twofold whitening step; once this has
been done, also non-parametric estimators provide considerably improved results.

It represents a typical situation in present-day scientific research that spa-
tially extended dynamical systems are investigated by sampling at discrete spatial
positions and time points. It may be argued that bivariate mutual information was
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insufficient for such situations since it does not properly address the various po-
tential sources for spatial and temporal correlations. One possible extension of the
standard definition is given by conditional mutual information;(12) whitening by
explicit modelling of the dynamics with respect to both space and time provides an
alternative approach. As we have demonstrated in the simulation example, it is not
required that the correct dynamical model be employed; we expect that for a large
fraction of cases a linear low-order autoregressive model with nearest-neighbour
interactions may prove to be a useful approximation.

As a natural consequence of the methodology discussed in this paper, the
estimate of mutual information becomes dependent on the dynamical model used
for whitening; as an example, compare the lower panels of Figs. 2 and 4: Whereas
in Fig. 2 all correlations contribute to the mutual information, in Fig. 4 most cor-
relations have been removed by whitening, and only those remain which are not
captured by the model. By this method it becomes possible to decompose correla-
tions into different layers, such that each refinement of the model renders it possible
to describe more correlations through the model, and delegate less correlations to
the class of “unexplained” correlations remaining in the innovations.

Whether explicitly nonlinear model classes need to be employed, depends
on the data; generally, strong deviations from Gaussianity will indicate the ne-
cessity of employing nonlinear elements in the modelling of the dynamics or the
observation process. The case of data generated by a sigmoid nonlinearity is, to
some degree, a well-behaved case, since it corresponds to thin-tail deviations from
Gaussianity. On the other hand, it has been demonstrated in this paper that also
pronounced asymmetries can efficiently be mapped back to approximately Gaus-
sian distributions by employing a simplified linear model. We do not yet know
how this model class would perform in the presence of heavy-tail distributions;
further work is required in order to obtain more experience with respect to these
issues.

While in this paper we have relied upon using a fairly simple model class
for the dynamics, it has to be admitted that the true dynamics of many spatially
extended systems occurring in Nature may be considerably more complex, and
therefore it may in some cases be very difficult to find efficient models for whiten-
ing the data. In such situations it will be necessary to explore more sophisticated
model classes and to spend considerable effort on choice and adaptation of the
models, possibly employing prior external knowledge about the dynamical prop-
erties of the system in question.

Also in simulations it is possible to find systems for which the approach as
described in this paper fails. As an example we mention the logistic map lattice
used in Ref. 48; a stochastic version of this lattice could be defined by (again using
a one-dimensional chain of points with periodic boundary conditions)

y(v)
t = a(v)

1 f
(

y(v)
t−1

)
+ b(v,v−1)

1 f
(

y(v−1)
t−1

)
+ b(v,v+1)

1 f
(

y(v+1)
t−1

)
+ η

(v)
t , (44)
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where f (.) denotes the logistic map

f (y) = c − y2; (45)

here c denotes a constant parameter. Obviously Eq. (44) represents a strongly
nonlinear system that cannot be easily approximated by linear models. When
repeating all numerical experiments of this paper with data generated by Eq. (44)
(using c = 1.99) instead of Eq. (37), again driving two nodes by a common noise
input, none of the matrices of correlation and mutual information, whether for raw
data or innovations, detects this intrinsically correlated pair. This would probably
require modelling the data by employing the correct model class, as given by
Eqs. (44) and (45). For real data the correct model class remains unknown; in this
case the performance of linear and nonlinear models needs to be compared by
their corresponding likelihoods, or preferably by their values of AIC or BIC.

As has already been mentioned, it is possible to generalise the analysis dis-
cussed in this paper to the case of lagged correlations between different points
in space. While here we have confined our attention to instantaneous correlations
in the innovations, it would be easily possible to analyse more general cross-
correlations within the innovations, and thereby investigate directed connectivity
and causal relationships between pairs of points in space. Again we presume that
it may be useful and even necessary to first remove the layers of easily explainable
correlations, before the deeper causality relationships can be uncovered.

Finally we mention that, not surprisingly, the results of modelling and of es-
timation of mutual information will be the more reliable, the longer the available
time series are. By using a time series of Nt = 512 points length in the simulation
we have chosen an intermediate case; when using longer time series, in the raw
data the intrinsic correlation between pairs of nodes will gradually become com-
pletely hidden, whereas in Fig. 2 it is still possible to discern positive values of
r (16, 41) and I (16, 41) which weakly stand out against the background. In such
cases whitening approaches to uncovering intrinsic correlations become even more
useful. On the other hand, in various fields, such as biomedical data analysis or
palaeoclimatic research, it is not uncommon that the length of the available time
series is of the order of only 100 time points or even shorter. We have found in
additional simulations that also in such unfavourable cases the whitening approach
succeeds in providing results similar to those shown in Figs. 4 and 5; however, in
such cases the actual appearance of the matrices r (v,w) and I (v,w) will strongly
depend on the particular realisation sampled from the system.

We are currently applying the methodology developed in this paper to spa-
tiotemporal data sets obtained by functional magnetic resonance imaging (fMRI)
from the brains of volunteers participating in stimulation experiments; the detailed
results of these investigations will be presented and discussed elsewhere. However,
we expect that the theory and methodology of whitening through parsimonious
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MAR modelling will bear relevance for the analysis of spatiotemporal data sets
arising in numerous fields of science.

APPENDIX A: MUTUAL INFORMATION OF BIVARIATE

INNOVATION TIME SERIES

In order to evaluate Eq. (8), the two main contributions from the log-
likelihoods, Eqs. (17) and (18), need to be evaluated, while the constant terms
(those including log(2π )) cancel out. The first contribution is given by (omitting
the factor (-1/2))

Nt log |Ŝε(x,y|x,y)| − Nt log σ̂ 2
ε(x |x) − Nt log σ̂ 2

ε(y|y); (46)

by inserting the determinant of Eq. (19) and rearranging, this contribution yields
readily

Nt log(1 − r̂2(ε(x), ε(y))) + Nt

(
log σ̂ 2

ε(x |x,y) − log σ̂ 2
ε(x |x)

)

+Nt

(
log σ̂ 2

ε(y|x,y) − log σ̂ 2
ε(y|y)

)
; (47)

here the “hat” notation denotes the maximum-likelihood (ML) estimates of the
corresponding parameters.

The second contribution is given by (again omitting (−1/2))
∑

t

(εt (x |x, y), εt (y|x, y)) Ŝ−1
ε(x,y|x,y) (εt (x |x, y), εt (y|x, y))†

−
∑

t

ε2
t (x |x)

σ̂ 2
ε(x |x)

−
∑

t

ε2
t (y|y)

σ̂ 2
ε(y|y)

. (48)

In order to evaluate this contribution the appropriate ML estimates need to
be inserted explicitly. From a standard theorem of multivariate statistics (see e.g.
Theorem 4.3.1 in Ref. 52) it follows that the ML estimate of Sε(x,y|x,y) is given by

Ŝε(x,y|x,y) =
⎛

⎝
N−1

t

∑
t
ε2(x |x, y) N−1

t

∑
t
ε(x |x, y)ε(y|x, y)

N−1
t

∑
t
ε(x |x, y)ε(y|x, y) N−1

t

∑
t
ε2(y|x, y)

⎞

⎠ . (49)

By comparing Eqs. (19) and (49) the ML estimators of the variances and the
linear correlation coefficient result as

σ̂ 2
ε(.|.) = 1

Nt

∑

t

ε2(.|.) and r̂ (ε(x), ε(y)) =
∑

t
ε(x |x, y)ε(y|x, y)

Nt σ̂ (x |x, y)σ̂ (y|x, y)
, (50)

respectively. Here ε(.|.) stands for any of the combinations ε(x |x), ε(y|y),
ε(x |x, y) and ε(y|x, y). By inserting these estimates, the second and third sum in
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expression (48) each reduce to Nt , while the first sum, after inserting the inverse
of Eq. (19) and some further transformations, is found to reduce to 2Nt , such that
expression (48), i.e. the second contribution, altogether vanishes.

Therefore the mutual information is given by taking expression (47) times
(−1/2), as claimed in Eq. (20).

APPENDIX B: LOG-LIKELIHOOD FOR BIVARIATE TIME SERIES

WITH INSTANTANEOUS COUPLING

For simplicity, in this appendix we shall not use different notation for a
statistical quantity and its estimate. We start by rewriting Eq. (34) as

(
x (v)

t

x (w)
t

)
= C−1

⎛

⎜⎝
µ(v) + ∑

t ′
a(v)

t ′ x (v)
t−t ′ + ∑

u
b(v,u)

1 x (u)
t−1

µ(w) + ∑
t ′

a(w)
t ′ x (w)

t−t ′ + ∑
u

b(w,u)
1 x (u)

t−1

⎞

⎟⎠ + C−1

(
εt (v)

εt (w|v)

)
,

(51)

where we have defined C =
(

1 0
−cvw 1

)
. The innovation term in Eq. (51) is given

by C−1 (εt (v), εt (w|v))†, and the corresponding covariance matrix follows as

Sε(v,w|v) = C−1

(
σ 2

ε(v) 0

0 σ 2
ε(w|v)

)
(
C−1

)† =
(

σ 2
ε(v) cvwσ 2

ε(v)

cvwσ 2
ε(v) c2

vwσ 2
ε(v) + σ 2

ε(w|v)

)
. (52)

Note that here we are using the fact that the covariance matrix of the innovation
term in Eq. (34), (εt (v), εt (w|v))†, is known to be diagonal, since all instantaneous
correlations are captured by the coupling term cvw x (v)

t . The log-likelihood of
model (34) is given by

L(v,w|v) = −1

2

Nt∑

t=p+1

(
log

∣∣Sε(v,w|v)

∣∣ + (εt (v), εt (w|v)) S−1
ε(v,w|v)

× (εt (v), εt (w|v))† + 2 log(2π )
)

, (53)

where |.| denotes matrix determinant. After inserting Eq. (52) and some further
transformations this expression becomes

L(v,w|v) = −1

2
(Nt − p)

(
log σ 2

ε(v) + log σ 2
ε(w|v)

) − (Nt − p) (1 + log(2π ))

+ (Nt − p)
2cvw σ 2

ε(v),ε(w|v) − c2
vw σ 2

ε(v)

2σ 2
ε(w|v)

, (54)

where we have defined σ 2
ε(v),ε(w|v) = E (εt (v)εt (w|v)). Since for the first p data

points no predictions can be performed, (Nt − p) arises in this expression instead



1312 Galka, Ozaki, Bayard and Yamashita

of Nt . Typically p will be small, therefore the missing likelihood contribution of
the first p points can be neglected.

Note that the log-likelihood of the uncoupled model Eq. (33) is given by

L(v,w) = −1

2
(Nt − p)

(
log σ 2

ε(v) + log σ 2
ε(w)

) − (Nt − p) (1 + log(2π )) . (55)

From Eqs. (9) and (14)–(16) it follows that the mutual information of the time
series at grid points v and w is given by (identifying x (v)

t with yt and x (w)
t with xt )

I
(
x (v), x (w)

) = L(v,w|v) − L(v,w). (56)

Thereby we obtain the estimator for mutual information

I
(
x (v), x (w)

) = (Nt − p)
2cvw σ 2

ε(v),ε(w|v) − c2
vw σ 2

ε(v)

2σ 2
ε(w|v)

, (57)

as claimed in Eq. (35).
Although the majority of values provided by this estimator are positive, it has

to be mentioned that frequently also negative estimates occur, although mutual
information cannot be negative. From the viewpoint of Likelihood Ratio Testing,
this behaviour corresponds to the case of the more general model performing
worse than the special model. While closer examination may be required in order
to fully understand this surprising behaviour, we interprete this effect as a mainly
numerical problem resulting from replacing the correct symmetric bivariate model,
Eq. (23), by the approximative asymmetric model, Eq. (34). For the numerical
results presented in this paper we have taken the following approach: Since for
each pair of grid points (v,w) two asymmetrical models can be formulated, only
the model corresponding to the higher likelihood is accepted; and in the case that
both models yield negative estimates of mutual information, a value of zero is
assumed.

Finally we briefly consider once again Sε(v,w|v), as given by Eq. (52), and
compare with Sε(v,w|v,w), as given by Eq. (19). Each of these two expressions con-
tains three independent parameters, such that they can be interpreted as providing
two different parametrisations for the covariance matrix of bivariate time series;
but it is obvious that Eq. (19) represents the general case, while Eq. (52) represents
an approximation. By comparing both expressions it can be seen that the coupling
parameter cvw corresponds roughly (but not precisely) to the coefficient of linear
correlation r (ε(v), ε(w)). Further study may be required for understanding the
differences and similarities between these two parametrisations in full detail.
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6. J. Bascompte and R. V. Solé (eds.), Modelling Spatiotemporal Dynamics in Ecology (Springer,
Berlin, Heidelberg, New York, 1998).

7. E. Yago, C. Escera, K. Alho, M. H. Giard and J. M. Serra-Grabulosa, Spatiotemporal dynamics of
the auditory novelty-P3 event-related brain potential. Cogn. Brain Res. 16:383–390, 2003.

8. C. Lukas, J. Falck, J. Bartkova, J. Bartek and J. Lukas, Distinct spatiotemporal dynamics of
mammalian checkpoint regulators induced by DNA damage. Nature Cell Biol. 5:255–260, 2003.

9. M. Mori, M. Kaino, S. Kanemoto, M. Enomoto, S. Ebata and S. Tsunoyama, Development of
advanced core noise monitoring system for BWRS. Prog. Nucl. Energy 43:201–207, 2003.

10. W. Li, Mutual information functions versus correlation functions. J. Stat. Phys. 60:823–837, 1990.
11. P. Hall and S. C. Morton, On the estimation of entropy. Ann. Inst. Statist. Math. 45:69–88, 1993.
12. D. R. Brillinger, Second-order moments and mutual information in the analysis of time series. In

Y. P. Chaubey (ed.), Recent Advances in Statistical Methods, pp. 64–76 (Imperial College Press,
London, 2002).

13. D. R. Brillinger, Some data analyses using mutual information. Brazilian J. Prob. Statist. 18:163–
183, 2004.

14. K. Kaneko, Spatiotemporal chaos in one- and two-dimensional coupled map lattices. Physica D
37:60–82, 1989.

15. C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27:379–423, 623–656,
1948.
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